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Parametrically excited hydrodynamic solitons
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Based on the analysis of the recent experimental data, a new equation governing the motion of the solitons
in a small rectangular water trough is proposed by using multiple-scale method. Both analytical and numerical
analyses reveal that the equation gives a good explanation for some of the typical experimental observations on
the evolution of the single and double solitons as well as the effect of surface tension on both breather and kink
solitons. It also predicts the reflection of double-soliton at the end walls of the trough.
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PACS numbdis): 43.25+y, 47.35+i

The parametrically excited hydrodynamic soliton in a Let the length of the trough He The velocity potential
small water trough has been the one of the hot topics muchatisfies the following kinematic boundary value problem,
discussed by many physicists and mathematicians. This

study also provides an intuitive and vivid model for studying VZ$=0, —d=z=p, )
the general properties of the solitons in many other fields

even beyond the scope of fluid dynamics in recent years. To #x=0, x=0L, &)
date quite a few experimental results on parametrically ex-

cited solitons have been reported. Following the first obser- $y=0, y=0p, ©)
vation of breather by Wu, Keolian, and Rudrik], the kink

soliton has been found by Denardo, Wright, and Putterman $,=0, z=-d, (4)
[2]; the dynamic behavior of the solitons, for instance, the

interaction between two as well as multiple solitons, the tran- b= Mt Pyt Pymy, 2= (XYL, 5
sition from period to chaos, has been studied by some au-

thors [3-5]. The theoretical work was first carried out by i+ (9+20) n+ 5 (et do+ b3)

Larraza and Puttermaf6], Miles [7], and later by Guo-
Xiang, Jia-ren, and Xian-X[8] and Xian-chu and Hong-
nong[9]. Taking into account driving, linear damping, and
surface tension of the liquid, Miles arrived at a nonlinear
Schralinger equation modified to include the driving and .
linear damping[we refer to it as the modified nonlinear z=n(xy.1), ©®)
Schralinger (MNLS) equatior}, which predicts analytically . ) . o .
the existence of single breather and kink soliton, as well a¥/N€rézo=—4wyay Cos 2ot is the driving acceleration ex-
the effect of surface tension on breather and kink solitons. T§ed vertically on the troughy, approximates the natural
examine the effect of surface tension, in REf0], the  frequency of thellgnode described ky=7/b [called mode
present authors have compared the distribution of both kind: D], @=(gkT)™ (T=tanhkd), of the trough, 7 is the
of solitons on the phase plane of parametedsvs o (o free-surface displacement of water. For the typical experi-
= ak?pg, a and p the surface tension coefficient and the Mental parametets=2.54 cm,d=2 cm,g=980 cm/$, the
density of the water, respectively,the gravitational accel- corresponding value ab is 34.6 rad/s, and,=32.7 rad/s,
eration, k= /b, b the width of the troughd the depth of 80>0.07 cm, =70 dynefcm, p=1 glem?, we have
wated, predicted from MNLS with the one measured experi-4©g20/9=0.31 and ¢=0.11. This shows that both
mentally, and found out an obvious discrepancy between théwgas/g and o are of the same order of magnitude. We
theory and the experiment: the theoretical distribution deassume

pends strongly orr andkd, while the experimental one is

independent ofr, but depends only okd. We have thus 2 _ _ _
made a qualitative explanation by comparing the potential 40520/9=0(e), 0=0(e), p= €w
energy of the free surface due to surface tension to that due

to displacement. In this paper, analyzing and comparing thwith € a small scale parameter. In Miles’ thearywas 0(1).
experimental data, and using multiple-scale method, a neWxpand the boundary condition equatigbsand(6) to third
equation governing the evolution of the solitons will be de-order in% atz=0. According to the experiment, we consider
rived. Some characteristics of the equation will be discussedhat only the cross wawvén width direction of the trough or

A numerical analysis will be given to show the feasibility of the mode (0,1) was excited. and the soliton is the amplitude
the equation in explaining the experiments, and even to premodulation of this mode in length direction. Introduce
dict some new phenomena of the system. multiple-scale variable

@ My 1+ 7]§)+ 7]yy(1+ ﬂi) - 27lx7ly77xy
p (1+ mi+ n))%? ’

wWop— w

=0(1), (7
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xj=€lx, t=6t, (j=1,23...). (8)
2 kd=4.0
Expand¢ and n as 20
1 o 145
2 2 o g12 o o o)
¢=2 "y, n=2 €. ) <
n=1 n=1 0 o o o 010220 o 9
Inserting Eqs(8) and (9) into Egs.(1) through(6), we will - Lo
obtain a series of linear boundary value problems. Solving -1}: 08
these problems successively, we will obtain the solutions of e .
various order ine. The first-order solution is 0 0.1 0.2 03 04
(o}
:COShk(Z+d)[¢(Z+Y)+C c] (10) FIG. 1. A vs ¢ with kd as parameter. Also plotted are the
! coshkd T experimentally measured distribution of breather and kink solitons.
O, breather;®, kink; *. Wu's breather;+, Denardo’s kink(the
i@ experimental data were taken from Réfk,2] and[10]).
n1=5[¢(2+ Y)—c.cl, (11)
Al 6T4—5T?+16—9T 2 18
where B 2(2le+al2) ’ (18)
Z=elky—ot)  y—gilkytot) (12) In Eq. (16) we have introduced linear damping by replacing

i(alaty) withi[ (9/dt1) + 6], in which § is the ratio of actual

where c.c. is complex conjugatey is a function of to critical damping for free oscillations. Equati¢k®) is just
X1,X2,t1,tp, . ... To thesecond-order problem, the condi- the evolution equation for the amplitude of the first-order

tion for eliminating the secular term for the first harmonic is solution. Compared to MNLS, a new term relative to driving,
—(w/wl)yd/fl, appears in Eq(16). As MNLS does, Eq.

2i g+ (2i wgy SiN 2wt — @y €OS wot — o w) $h=0. (16) has steady; =0, ¢ =0) breather soliton solution for
13 kd4>1.022 A>0),

The second-order solution is _ A\ L2
z/;:Mle'”seCV{Ml(ﬁ) X1/, (19
_ cosh X(z+d)[ 3K (1+T%)(1-T?)
> coshxd | 4wT2 and kink soliton solution fokd<1.022 A<0),
) |A| 1/2
X yA(Z?+Y?) +c.c. = Mze”’tank{M2<E) X1/ (20
_k2i with
+ (1+3T?)y?ZY+c.c., (14
2w
m 1 6
0=E—§sm ; (21
T8 v o
= c.c.
& 2gT? v FAMI+ B—(y*— 8%)Y2=0, (22
K3A(T?+1 2k3(T?-1
+ ( 5 )|l,[/|2[ZY* +c.c]+ (g )|¢|2 M§|A|+,8—('yz—52)1/2=0. (23

One can see from E@18) that due tar>0, hence, the larger
the o, the smaller the magnitude &f but o does not influ-
To the third-order problem, we will give only the compatible €Nc€ the sign oA, which vanishes akd=1.022. A vs o
condition for the first harmonic, we have with kd as parameter is plotted in Fig. 1, in whid>0
corresponds tdkd>1.022, while A<O0 corresponds tdkd
w <1.022. Also plotted in Fig. 1 are the experimental results of
|, — w—wa‘l+ Sy +B¢Xlxl+(,8+A|¢|2)¢+ vi* =0, ours [10], Wu [1], and Denardd?2]. One can see a good
1 (16) agreement between theory and experiments. At this point, we
can say that the reason for the discrepancy between Miles’
theory and experiment is the stronger effect of surface ten-
sion on the soliton being taken in the theory.
The stability analysis by Laedket al. [11] is also appli-
- - (1 cable to the Eq(16) for the stationary soliton solution. The
egw?(2le+ol2) 2e+ol2’ condition

(19

where

wlwgao(w+2wo) 1
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FIG. 2. The stability region for one breather solitan=34.6
rad/s,oc=0.1.

<2< 6%+ g? (24)

corresponds to the upper and lower limits of the driving am-
plitude, while the condition

£<0, (25

meanswo<w, corresponds to upper limit of the driving fre-
guency. Figure 2 is a stability diagram for single breather
soliton onay Vs wq plane according to Eq$24) and (25)
with typical experimental parameters. We see from @d) —
that aso and/or § are increased, the stability region moves 0 10 20 30 40
up. This shows that the larger tlseand § are, the larger the X {cm)
driving amplitude is needed to compensate the effects of the _
surface tension and the damping. The stability region mea- FIG. 3. The_numencal rc_esults of Eq16). (@ One breather
sured experimentally is a limited region with some IowerSOIIton with a slight Change 'n. wave forray=0.08 C.m‘(p) FPU
limit of driving frequency onag Vs the wg plane[1]. The r_ecurrence of double so!ltons, the recurrence period is 8 &gc.
2. . . a =0.09 cm.(c) The reflection of double soliton at the end walls of
reason for this is that the soliton is the modulatlon(@ﬂ) the trough.ay=0.11 cm.w,=32.8 rad/s for all cases.
mode, which becomes unstable below some driving fre-
guency.
Next we investigate whether E@16) can describe the portant resultis the phenomenon of Farmi-Pasta-UBRL)
complex dynamical behavior of the solitons found in therecurrence. two solitons form a bound state, vibrate back and
experiment, and even give us more information of the sysforth with each othefas shown in Fig. ®)]. These are in
tem. Owing to the nonintegrability of the E¢L6), we have good agreement with experiments. As driving amplitude is
solved Eg.(16) numerically by using the implicit finite- increased, the calculated recurrence period and separation of
difference algorithm. To check the effectiveness of thetwo solitons increase, at last, they reflected at the boundary
method, a numerical scheme was tested against the knowhig. 3(c)]. However, this has not yet been observed experi-
standing soliton solution of Eq16) (with y=§=0), mentally up to now. This is probably due to the strong fric-
tion between the liquid and the walls of the container. If one
can diminish friction further between the liquid and the walls

' (26) of the container, may be one can see the phenomenon pre-
dicted from above.

the computed results were found to deviated by less than N summary, based on the analysis of the experimental
2-3% from Eq/(26) after several periods passed for tige ~ data, we have obtained a new equatid6) governing the

Then we change driving amplitude and frequency and damgnotion of the solitons by using multiple-scale method. The
ing, and take single and double soliton as initial conditionsdnalytical and numerical analysis reveal that the equation

and the boundary conditiow ¢/ 9x,) |y _o.. =0. The typical ~ 9ives a good explanation for experimental observation on the
o evolution of single and double solitons, as well as the effect

of surface tension on both breather and kink solitons. It also
predicts the reflection of the double soliton at the end walls
of the trough.

1/2
:ei(B+A/2)t1 sech| — X
lrb 2B 1

results are indicated in Fig. 3. For the case of single soliton
when driving amplitudea, satisfies 0.065 cm<ay<<0.075
cm, the soliton is stable without any deformation for a long
period. Asay is increased, say,=0.08 cm, the wave form
varies slightly with timelas seen in Fig. @]. Whena, is We are grateful to Professor Wei-zhong Chen for helpful
increased further, the soliton becomes unstable, and daliscussions. This work was supported by The Chinese Non-
stroyed due to the excitation of Stokes wave or other comlinear Science Foundation and The Chinese National Natural
plex wave patterns. For the case of double solitons, an imScience Foundation.
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