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Parametrically excited hydrodynamic solitons
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Based on the analysis of the recent experimental data, a new equation governing the motion of the solitons
in a small rectangular water trough is proposed by using multiple-scale method. Both analytical and numerical
analyses reveal that the equation gives a good explanation for some of the typical experimental observations on
the evolution of the single and double solitons as well as the effect of surface tension on both breather and kink
solitons. It also predicts the reflection of double-soliton at the end walls of the trough.
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PACS number~s!: 43.25.1y, 47.35.1i
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The parametrically excited hydrodynamic soliton in
small water trough has been the one of the hot topics m
discussed by many physicists and mathematicians. T
study also provides an intuitive and vivid model for studyi
the general properties of the solitons in many other fie
even beyond the scope of fluid dynamics in recent years
date quite a few experimental results on parametrically
cited solitons have been reported. Following the first obs
vation of breather by Wu, Keolian, and Rudnik@1#, the kink
soliton has been found by Denardo, Wright, and Putterm
@2#; the dynamic behavior of the solitons, for instance,
interaction between two as well as multiple solitons, the tr
sition from period to chaos, has been studied by some
thors @3–5#. The theoretical work was first carried out b
Larraza and Putterman@6#, Miles @7#, and later by Guo-
Xiang, Jia-ren, and Xian-Xi@8# and Xian-chu and Hong
nong @9#. Taking into account driving, linear damping, an
surface tension of the liquid, Miles arrived at a nonline
Schrödinger equation modified to include the driving an
linear damping@we refer to it as the modified nonlinea
Schrödinger ~MNLS! equation#, which predicts analytically
the existence of single breather and kink soliton, as wel
the effect of surface tension on breather and kink solitons
examine the effect of surface tension, in Ref.@10#, the
present authors have compared the distribution of both k
of solitons on the phase plane of parameterskd vs s (s
[ak2/rg, a and r the surface tension coefficient and th
density of the water, respectively,g the gravitational accel-
eration,k5p/b, b the width of the trough,d the depth of
water!, predicted from MNLS with the one measured expe
mentally, and found out an obvious discrepancy between
theory and the experiment: the theoretical distribution
pends strongly ons and kd, while the experimental one i
independent ofs, but depends only onkd. We have thus
made a qualitative explanation by comparing the poten
energy of the free surface due to surface tension to that
to displacement. In this paper, analyzing and comparing
experimental data, and using multiple-scale method, a
equation governing the evolution of the solitons will be d
rived. Some characteristics of the equation will be discuss
A numerical analysis will be given to show the feasibility
the equation in explaining the experiments, and even to
dict some new phenomena of the system.
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Let the length of the trough beL. The velocity potentialf
satisfies the following kinematic boundary value problem

¹2f50, 2d<z<h, ~1!

fx50, x50,L, ~2!

fy50, y50,b, ~3!

fz50, z52d, ~4!

fz5h t1fxhx1fyhy , z5h~x,y,t !, ~5!

f t1~g1 z̈0!h1 1
2 ~fx

21fy
21fz

2!

5
a

r

hxx~11hy
2!1hyy~11hx

2!22hxhyhxy

~11hx
21hy

2!3/2
,

z5h~x,y,t !, ~6!

where z̈0524v0
2a0 cos 2v0t is the driving acceleration ex

erted vertically on the trough,v0 approximates the natura
frequency of the mode described byk5p/b @called mode
~0,1!#, v5(gkT)1/2 (T[tanhkd), of the trough,h is the
free-surface displacement of water. For the typical exp
mental parametersb52.54 cm,d52 cm,g5980 cm/s2, the
corresponding value ofv is 34.6 rad/s, andv0532.7 rad/s,
a050.07 cm, a570 dyne/cm, r51 g/cm3, we have
4v0

2a0 /g50.31 and s50.11. This shows that both
4v0

2a0 /g and s are of the same order of magnitude. W
assume

4v0
2a0 /g50~e!, s50~e!, b[

v02v

ev
50~1!, ~7!

with e a small scale parameter. In Miles’ theorys was 0(1).
Expand the boundary condition equations~5! and~6! to third
order inh at z50. According to the experiment, we consid
that only the cross wave~in width direction of the trough!, or
the mode (0,1) was excited. and the soliton is the amplit
modulation of this mode in length direction. Introduc
multiple-scale variable
4075 ©1999 The American Physical Society
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xj5e j x, t j5e j t, ~ j 51,2,3, . . . !. ~8!

Expandf andh as

f5 (
n51

enfn , h5 (
n51

enhn . ~9!

Inserting Eqs.~8! and ~9! into Eqs.~1! through~6!, we will
obtain a series of linear boundary value problems. Solv
these problems successively, we will obtain the solutions
various order ine. The first-order solution is

f15
coshk~z1d!

coshkd
@c~Z1Y!1c.c.#, ~10!

h15
iv

g
@c~Z1Y!2c.c.#, ~11!

where

Z5ei ~ky2vt !, Y5e2 i ~ky1vt !, ~12!

where c.c. is complex conjugate,c is a function of
x1 ,x2 ,t1 ,t2 , . . . . To thesecond-order problem, the cond
tion for eliminating the secular term for the first harmonic

2ic t1
1~2iv0g sin 2v0t2vg cos 2v0t2sv!c50.

~13!

The second-order solution is

f25
cosh 2k~z1d!

cosh 2kd F3k2i ~11T2!~12T2!

4vT2

3c2~Z21Y2!1c.c.G
1F2k2i

2v
~113T2!c2ZY1c.c.G , ~14!

h25
k2~T223!

2gT2
@c2~Z21Y2!1c.c.#

1
k2~T211!

g
ucu2@ZY* 1c.c.#1

2k2~T221!

g
ucu2.

~15!

To the third-order problem, we will give only the compatib
condition for the first harmonic, we have

i S c t1
2

v

v1
gc t1

* 1dc D1Bcx1x1
1~b1Aucu2!c1gc* 50,

~16!

where

g5
v1v0

2a0~v12v0!

egv2~2/e1s/2!
, B5

1

2/e1s/2
, ~17!
g
f

A5
6T425T211629T22

2~2/e1s/2!
, ~18!

In Eq. ~16! we have introduced linear damping by replaci
i (]/]t1) with i @(]/]t1)1d#, in whichd is the ratio of actual
to critical damping for free oscillations. Equation~16! is just
the evolution equation for the amplitude of the first-ord
solution. Compared to MNLS, a new term relative to drivin
2(v/v1)gc t1

* , appears in Eq.~16!. As MNLS does, Eq.

~16! has steady (c t1
50, c t1

* 50) breather soliton solution fo

kd.1.022 (A.0),

c5M1eiu sechFM1S A

2BD 1/2

x1G , ~19!

and kink soliton solution forkd,1.022 (A,0),

c5M2eiu tanhFM2S uAu
2BD 1/2

x1G , ~20!

with

u5
p

2
2

1

2
sin21

d

g
, ~21!

1
2 AM1

21b2~g22d2!1/250, ~22!

M2
2uAu1b2~g22d2!1/250. ~23!

One can see from Eq.~18! that due tos.0, hence, the large
the s, the smaller the magnitude ofA, but s does not influ-
ence the sign ofA, which vanishes atkd51.022. A vs s
with kd as parameter is plotted in Fig. 1, in whichA.0
corresponds tokd.1.022, while A,0 corresponds tokd
,1.022. Also plotted in Fig. 1 are the experimental results
ours @10#, Wu @1#, and Denardo@2#. One can see a goo
agreement between theory and experiments. At this point
can say that the reason for the discrepancy between M
theory and experiment is the stronger effect of surface t
sion on the soliton being taken in the theory.

The stability analysis by Laedkeet al. @11# is also appli-
cable to the Eq.~16! for the stationary soliton solution. Th
condition

FIG. 1. A vs s with kd as parameter. Also plotted are th
experimentally measured distribution of breather and kink solito
s, breather;d, kink; *. Wu’s breather;1, Denardo’s kink~the
experimental data were taken from Refs.@1,2# and @10#!.
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d2,g2,d21b2 ~24!

corresponds to the upper and lower limits of the driving a
plitude, while the condition

b,0, ~25!

meansv0,v, corresponds to upper limit of the driving fre
quency. Figure 2 is a stability diagram for single breath
soliton ona0 vs v0 plane according to Eqs.~24! and ~25!
with typical experimental parameters. We see from Eq.~17!
that ass and/ord are increased, the stability region mov
up. This shows that the larger thes andd are, the larger the
driving amplitude is needed to compensate the effects of
surface tension and the damping. The stability region m
sured experimentally is a limited region with some low
limit of driving frequency ona0 vs the v0 plane @1#. The
reason for this is that the soliton is the modulation of~0,1!
mode, which becomes unstable below some driving
quency.

Next we investigate whether Eq.~16! can describe the
complex dynamical behavior of the solitons found in t
experiment, and even give us more information of the s
tem. Owing to the nonintegrability of the Eq.~16!, we have
solved Eq. ~16! numerically by using the implicit finite-
difference algorithm. To check the effectiveness of t
method, a numerical scheme was tested against the kn
standing soliton solution of Eq.~16! ~with g5d50),

c5ei ~b1A/2!t1 sechF S A

2BD 1/2

x1G , ~26!

the computed results were found to deviated by less t
2–3 % from Eq.~26! after several periods passed for timet1 .
Then we change driving amplitude and frequency and da
ing, and take single and double soliton as initial conditio
and the boundary condition (]c/]x1)ux150,eL50. The typical
results are indicated in Fig. 3. For the case of single solit
when driving amplitudea0 satisfies 0.065 cm,a0,0.075
cm, the soliton is stable without any deformation for a lo
period. Asa0 is increased, say,a050.08 cm, the wave form
varies slightly with time@as seen in Fig. 3~a!#. Whena0 is
increased further, the soliton becomes unstable, and
stroyed due to the excitation of Stokes wave or other co
plex wave patterns. For the case of double solitons, an

FIG. 2. The stability region for one breather soliton.v534.6
rad/s,s50.1.
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portant result is the phenomenon of Farmi-Pasta-Ulam~FPU!
recurrence. two solitons form a bound state, vibrate back
forth with each other@as shown in Fig. 3~b!#. These are in
good agreement with experiments. As driving amplitude
increased, the calculated recurrence period and separatio
two solitons increase, at last, they reflected at the bound
@Fig. 3~c!#. However, this has not yet been observed exp
mentally up to now. This is probably due to the strong fr
tion between the liquid and the walls of the container. If o
can diminish friction further between the liquid and the wa
of the container, may be one can see the phenomenon
dicted from above.

In summary, based on the analysis of the experime
data, we have obtained a new equation~16! governing the
motion of the solitons by using multiple-scale method. T
analytical and numerical analysis reveal that the equa
gives a good explanation for experimental observation on
evolution of single and double solitons, as well as the eff
of surface tension on both breather and kink solitons. It a
predicts the reflection of the double soliton at the end wa
of the trough.

We are grateful to Professor Wei-zhong Chen for help
discussions. This work was supported by The Chinese N
linear Science Foundation and The Chinese National Nat
Science Foundation.

FIG. 3. The numerical results of Eq.~16!. ~a! One breather
soliton with a slight change in wave form.a050.08 cm.~b! FPU
recurrence of double solitons; the recurrence period is 8 seca0

50.09 cm.~c! The reflection of double soliton at the end walls
the trough.a050.11 cm.v0532.8 rad/s for all cases.
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